
Commun. Combin., Cryptogr. & Computer Sci., 1 (2022), 23–33

ISSN:2783-5456

Encryption and Decryption of a Chaotic Fractional Order Financial System

Malek Karimiana,∗

aDepartment of mathematics, university of Ilam, Ilam. Iran

Abstract
This paper presents the anti-synchronization of two non-identical chaotic fractional order financial system with disturbance

observe (FOFSDO), such that the anti-synchronization is discussed with new parameters and disturbance in slave system by
using nonlinear active control technique. The stability of scheme is proved by applying Lyapunov stability method for error
system. The result of anti-synchronization with disturbance is applied in cryptography. Numerical examples and simulations
analysis show the applicability and validity of the scheme and considered system.
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1. Introduction

Recently the application of dynamic systems in various sciences including, electromagnetic waves, quan-
titative finance, engineering-biology, dielectric polarization, etc [38, 40, 41, 42, 43], is rapidly increasing.
In the last two decades, there have done some useful research on fractional-order financial systems(FOFS),
which we refer to as some of them.

Investigating stable dynamics of a fractional-order chaotic financial system whit parameter switching is
given by Marius-F. Danca et al [44]. Sara Dadras, Hamidreza Momeni [35] have investigated control of a
fractional-order economical system with sliding mode scheme. Zhen Wang, Xia Huang [34, 39] presented
synchronization of a chaotic fractional-order economical system with active control and, control of on un-
certain fractional-order economic system via adaptive sliding mode method [32] have studied finite-time
stabilizing a fractional-order chaotic financial system with marcet confidence. Ayub Khan and Arti Tyagi
[36] have designed disturbance observer-based adaptive sliding mode hybride projective synchronization of
identical fractional-order financial systems. Norely Aguila-Camacho et al [37] have investigated Lyapunov
functions for fractional-order systems. In 2016, analysis and circuit simulation of a novel nonlinear frac-
tional incommensurate order financial system, was reported [33]. Malek Karimian , Bashir Naderi and
Yousef Edrisi-Tabriz[46] presented the Application of a fractional-order financial system with disturbance in
encryption and decryption. Malek Karimian, Bashir Naderi and Yousef Edrisi-Tabriz[1] presented the Sen-
sitivity analytic and synchronization of a new fractional-order financial system. Tacha et al [31] presented
the determining the chaotic behavior in a fractional-order finance system with negative parameters. Zhe
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Zhang et al[45] presented a novel stability criterion of time-varying delay fractional-order financial systems
based a new functional transformation Lemma.

The research on the anti-synchronization of the dynamic systems using different method has been carried
out by many researchers, which we refer to below. In 2011, Diyi Chen et al [27] have investigated chaotic
synchronization and anti-synchronization for a class of multiple chaotic systems via a sliding mode control
scheme. Waffa Jawaada et al [26] have studied robust active sliding mode anti-synchronization of hyper-
chaotic systems with uncertainties and disturbances. Anti-synchronization of uncertain chaotic systems
with adaptive terminal sliding mode control, was reported in [30], and intermittent anti-synchronization of
two identical hyperchaotic chua systems via impulsive control scheme was presented by Hong-LiLi et al [28].
Al-Sawalla and Noorani [25, 29] have studied chaos and adaptive reduced-order for anti-synchronization of
uncertain chaotic systems with unknown parameters. Also some other scheme such as projections, active
control, phase ant anti-phase and reduced-order method are used for anti-synchronization of fractional-order
chaotic systems [21, 20, 22, 23, 19].

Recentlly for transmitting of information the chaotic systems used as a applicable method, such that
the information in transmitter merge with a chaotic signal. The sending information signal via public canal
recovered by a chaotic receiver. The most famous method for transmitting and recovering information chaos
masking, chaos modulation, and chaos shift keying. In chaos masking, the signal is added directly to the
transmitter, in modulation the signal injected into the transmitter, and in shift keying the chaotic signal
as a binary signal mapped into the transmitter. In these three cases, the information signal recovered by a
receiver whit applying synchronization or anti-synchronization between the chaotic transmitter and receiver
[13, 17, 10]. Development of chaos masking approach, chaotic shift keying, and modulation method can be
found in [9, 12, 11, 16, 8, 14].

Recently, several fractional or integer-order chaotic systems have been introduced. The synchronization
and anti-synchronization of these systems via methods such as adaptive control, sliding-mode and feedback
control have been discussed such that these systems are without disturbance. Some manuscripts used these
systems for secure communication [7, 5, 3, 4, 16, 6].

In this paper, the anti-synchronization between the FOFS are investigated using nonlinear active control
technique in the presence of new parametric, different initial conditions and the disturbance observer. By
using the Lyapunov stability, sufficient condition for achieving anti-synchronization of the chaotic FOFSDO
via active control is obtained. The disturbance can be have major role in anti-synchronization and its
applications. One application of anti-synchronization is encryption and decryption. In the most previous
works of researchers, for encryption and decryption used the systems without disturbance. We use the slave
system with disturbance for encryption and decryption, and show the results by numerical simulation.

2. Description of system

In this section, we review some fundamental definitions of fractional calculus. Also, we present stability
theorems, properties of fractional-order dynamical systems and describe the used financial fractional order
system.

Definition 2.1. [24] The qth fractional order Caputo derivative of function G(t) is as follow:

cD
q
tG(t) = D−(m−q)D(m)G(t) =

1
Γ(m− q)

∫t
0
(t− ζ)m−q−1G(m)(ζ)dζ, (2.1)

where m− 1 < q ⩽ m,m ∈ N,q ∈ R+, Γ(q) =
∫∞

0 tq−1e−tdt.

Some properties of fractional order differential equations are:

• The linear characteristic of the Caputo fractional-order derivative
cD

q
t [c1G1(t) + c2G2(t)] = cc1D

q
tG1(t) + cc2D

q
tG2(t), (2.2)

where c1, c2 are constants and G1,G2 are functions of t blue[18].
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• If G(t) is a constant function then
cD

q
tG(t) = 0, (2.3)

where 0 < q ⩽ 1 [18].

Lemma 2.2. [37] Assume that G(t) ∈ R is a continuous and differentiable function, then we have

1
2(

cD
q
tG

2(t)) ⩽ G(t)cDq
tG(t), (2.4)

where 0 < q < 1 .

Theorem 2.3. [15] Autonomous system Dqx = Ax, x(0) = x0 is asymptotically stable if the following
condition is satisfied

|arg(λ(A))| >
qπ

2 ,

where 0 < q < 1 and λ(A) is the eigenvalue of matrix A. Also, the system Dqx = Ax is stable if and only if
|arg(λ(A))| ⩾ qπ

2 , and those critical eigenvalues that satisfy |arg(λ(A))| = qπ
2 , have geometric multiplicity

of one.

Consider the following FOFS [33]: 
Dq1x = z+ (y− a)x
Dq2y = 1− by− |x|

Dq3z = −x− cz,
(2.5)

where x,y and z are rate, the investment demand, and the price index respectively. The constant
parameters a > 0, b > 0 and c > 0 are saving amount, the cost per investment and the elasticity of
demand, respectively and 0 < qi ⩽ 1(i = 1, 2, 3) is the fractional derivative order finance system. Figure 1
shows that the lowest value of qi(1 = 1, 2, 3) for which the system remains chaotic is commensurate order
q1 = q2 = q3 = 0.79 of the FOFS (2.5). Consider the new parameters as a a = 0.7, b = 0.1, c = 0.9 [1] and
the different initial condition (x(0),y(0), z(0)) = (3,−3.5, 1.5) [31].

2.1. Subsection title
In this section, the anti-synchronization between two different FOFSDO is studied.
The fractional-order master system as

Dq1x = z+ (y− a)x
Dq2y = 1− by− |x|

Dq3z = −x− cz,
(2.6)

and also, as the slave system as
Dq1x1 = z1 + (y1 − a)x1 + u1(t) + d1(t)
Dq2y1 = 1− by1 − x2

1 + u2(t) + d2(t)
Dq3z1 = −x1 − cz1 + u3(t) + d3(t),

(2.7)

where u(t) = (u1,u2,u3)T is the controller and di(i = 1, 2, 3) unknown disturbance observers. So the
anti-synchronization error dynamic system between (2.7) and (2.6) is as follow

cD
q1
t e1(t) = e3 + y1x1 + yx− ae1 + u1(t) + d1(t)

cD
q2
t e2(t) = 2− be2 − x2

1 − |x|+ u2(t) + d2(t),
cD

q3
t e3(t) = −e1 − ce3 + u3(t) + d3(t).

(2.8)
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Figure 1: The phase portrait of fractional order finance system (2.5) for the commensurate orders at q1 = q2 = q3 = q.
(a)q=0.78, (b)q=0.79, (c)q=0.86, (d)q=0.95, (e)q=1.
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The u1,u2 and u3 controllers are given by as follows:
u1(t) = −y1x1 − yx+w1(t) − d1(t)
u2(t) = −2+ x2

1 − |x|+w2(t) − d2(t)
u3(t) = w3(t) − d3(t),

(2.9)

where w1,w2 and w3 the control inputs, we have
w1(t) = (a− 1)e1 − e3
w2(t) = (b− 1)e2
w3(t) = e1 + (c− 1)e3.

(2.10)

By substituting (2.10) in (2.9) and then substituting (2.9) in (2.8), we get the error system as
Dq1e1 = −e1
Dq2e2 = −e2
Dq3e3 = −e3.

(2.11)

By define the Lyapunov function V(e) as follow

V(e) =
1
2(e

2
1 + e2

2 + e2
3), (2.12)

according Lemma (2.2) and property (2.2), we have

DqiV(e) ⩽ e1D
q1e1 + e2D

q2e2 + e3D
q3e3. (2.13)

By substituting (2.11) in (2.13), we get

DqiV(e) ⩽ −e2
1 − e2

2 − e2
3 < 0. (2.14)

The error system (2.8) is asymptotically stable. So the anti-synchronization between the systems (2.6) and
(2.7) is archived.

Numerical simulation
In this subsection, we provide numerical simulation for illustrating the proposed method. The Nu-

merical solution method is used to solve the systems. In the numerical simulation, we choose the new
parameters as a = 0.7,b = 0.1, c = 0.9 and the initial conditions of the master and slave systems are taken
as (x(0),y(0), z(0)) = (3,−3.5, 1.5), (x1(0),y1(0), z1(0)) = (−4.5, 1,−6.5) respectively. Thus the initial er-
ror are (−1.5,−2.5, 5). Disturbance observer as d1 = 0.1 sin(200t), d2 = 0.2 cos(200t),d3 = 0.3 cos(300t).
Figure 2 (a-c) shows the anti-synchronization between the master system (2.6) and the slave system (2.7)
at q1 = q2 = q3 = 0.83. Figure 3 (a-d) shows the anti-synchronization error functions e1, e2 and e3 for the
commensurate orders q1 = q2 = q3 = q = 0.83,q = 0.9,q = 0.96,q = 1, respectively. The error converges
to zero at approximate t = 4 as shown in figure 3. Figure 4 shows the anti-synchronization between the mas-
ter system (2.6) and the slave system (2.7) at q1 = q2 = q3 = 0.79. Figure 5 (a-d) anti-synchronization error
functions e1, e2 and e3 are shown. Also, figure 5(a-d) shows the error is converges to zero at approximate
time t = 4.

3. Histogram analysis

the encryption process is shown in Figure 9 in the implemented implementation, a 256*256 pixels size
12-bit gray image including Figure 7 and Figure 8 shapes in considered as the main images.
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Figure 2: Depicts the phase portraits of anti-synchronization of system (2.6) and (2.7).

Figure 3: anti-synchronization error for the commensurate orders, (a) q1 = q2 = q3 = q = 0.83, (b) q = 0.9, (c) q = 0.96, (d)
q = 1.
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Figure 4: Depicts the phase portraits of anti-synchronization of the master system (2.6) and the slave system (2.7).

Figure 5: anti-synchronization error for the commensurate orders, (a) q1 = q2 = q3 = q = 0.79, (b) q = 0.86, (c) q = 0.95, (d)
q = 1.



M. Karimian, Commun. Combin., Cryptogr. & Computer Sci., 1 (2022), 23–33 30

Figure 6: Diagram of secure communication based on anti-synchronization.

Figure 7: Penguin image, from left to right: original image, encrypted penguin, decryption penguin

4. Application of financial chaotic system with disturbance in cryptography

In this section, we investigate the masking secure communication scheme based on anti-synchronization
of two fractional-order chaotic finance systems such that the slave system have disturbance. The diagram of
secure communication methods by two fractional-order financial chaotic systems is shown in figure 6. The
used system at the transmitter side are systems 2.6 and 2.7 respectively.

At the transmitter side, the original message M(t) is masked by the chaotic signal. The masked message
is shown with T(t) and is defined

T(t) = M(t) + hx(t). (4.1)
M(t) must be well chosen in a way that it can be successfully masked by hx. Otherwise, the original

message M(t) is multiplied by a scaling factor [2] is used for resizing the original message. The resulting
signal T(t) from the transmitter is sent to the receiver via a public channel. By results in section ??,
the anti-synchronization will be achieved by designed controllers. If Tc is time greater than Ts (Ts is the
synchronization and anti-synchronization time), it will be suitable for transfer and recovery. The received
signal by the receiver is recoverable with following equation on anti-synchronization:

R(t) = T(t) + hx1 ∼= M(t).

Because, according to the concept of anti-synchronization, we have:

R(t) = M(t) + hx(t) + hx1(t) = M(t) + h(x(t) + x1(t)) = M(t) + he1(t) ∼= M(t).

the proposed secure communication scheme is established by two finance fractional-order chaotic systems
as shown in figures 6. Figure 7 shown the decryption and encryption of penguin image based on proposed
algorithm.
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Figure 8: Lena image, from left to right: original image, encrypted Lena, decryption Lena

Figure 9: Block diagram of chaotic system in encryption

5. Conclusions

In this paper, we used active control method for anti-synchronization of the FOFSDO with new parame-
ters and the different initial-conditions. The stability between two the FOFSDO has been investigated using
the appropriate Lyapunov function. The obtained results of anti-synchronization of systems with distur-
bance used for secure communication via masking method. The results show, that the designed controller
have effectiveness for anti-synchronization and secure communication with disturbance in slave system.
Numerical simulations confirm theoretical result and the proposed method.
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